Discontinuous Galerkin Immersed Finite Volume Element Method for Anisotropic Flow Models in Porous Medium
نویسندگان
چکیده
منابع مشابه
A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملNumerical Simulation for Porous Medium Equation by Local Discontinuous Galerkin Finite Element Method
In this paper we will consider the simulation of the local discontinuous Galerkin (LDG) finite element method for the porous medium equation (PME), where we present an additional nonnegativity preserving limiter to satisfy the physical nature of the PME. We also prove for the discontinuous P0 finite element that the average in each cell of the LDG solution for the PME maintains nonnegativity if...
متن کاملA discontinuous control volume finite element method for multi-phase flow in heterogeneous porous media
Article history: Received 24 November 2016 Received in revised form 26 June 2017 Accepted 29 September 2017
متن کاملA Combined Mixed Finite Element and Discontinuous Galerkin Method for Miscible Displacement Problem in Porous Media
A combined method consisting of the mixed finite element method for flow and the discontinuous Galerkin method for transport is introduced for the coupled system of miscible displacement problem. A “cut-off” operatorM is introduced in the discontinuous Galerkin formular in order to make the combined scheme converge. Optimal error estimates in L(H) for concentration and in L(L) for velocity are ...
متن کاملDiscontinuous Galerkin Finite Element Method for the Wave Equation
The symmetric interior penalty discontinuous Galerkin finite element method is presented for the numerical discretization of the second-order wave equation. The resulting stiffness matrix is symmetric positive definite and the mass matrix is essentially diagonal; hence, the method is inherently parallel and leads to fully explicit time integration when coupled with an explicit timestepping sche...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2014
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2014/520404